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Abstract 
Industrial control systems increasingly operate under conditions of regulatory accountability, 
cyber-physical convergence, and data-driven optimization. The European NIS2 Directive 
formalizes cybersecurity as a governance responsibility at executive level (European Union, 
2022). Simultaneously, industrial organizations pursue cloud integration and AI-enabled 
analytics.  
This paper translates established normative security frameworks into executable architecture 
and validates them through implementation. Drawing upon IEC 62443 segmentation 
principles (IEC, 2013), Zero Trust Architecture (Rose et al., 2020), NIST guidance on log 
integrity (Kent & Souppaya, 2006), and ISA-95 structural modeling (ISA, 2010), it presents 
both a design rationale and a working reference implementation. 
The central thesis is that architectural clarity precedes analytical ambition. 

1. Introduction: Structural Accountability in Industrial Systems 
Industrial systems rarely collapse suddenly; they degrade structurally. Implicit trust 
relationships accumulate, segmentation boundaries blur, namespaces drift, and logging 
mechanisms lose evidential clarity. Operational continuity may persist while structural 
integrity erodes. 
Ashby’s (1956) Law of Requisite Variety suggests that systems must possess sufficient 
internal structure to manage environmental complexity. As industrial environments integrate 
cloud platforms, remote connectivity, and AI-driven analytics, systemic complexity increases. 
Without proportional architectural discipline, fragility emerges. 
The NIS2 Directive reframes cybersecurity as a management responsibility rather than a 
purely technical safeguard (European Union, 2022). Architecture thus becomes an 
instrument of governance, expressed through technical design decisions. 
My professional experience across industrial and software domains has shown that 
structural ambiguity is often a more persistent risk than technical malfunction. This work 
addresses that risk at architectural level by translating normative principles into executable 
structure. 

2. Normative Foundations 
The architectural rationale draws upon converging standards and theoretical principles. 

2.1 IEC 62443 and Segmented Trust Domains 
IEC 62443 introduces the zone and conduit model, requiring explicit separation of functional 
domains and controlled communication paths (IEC, 2013). Trust must be structurally 
bounded rather than implicitly assumed. Segmentation therefore serves as systemic risk 
containment. 
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2.2 Zero Trust and Cryptographic Identity 
Zero Trust Architecture rejects trust based on network location (Rose et al., 2020). Identity 
must be cryptographically verifiable and continuously validated. Mutual TLS (mTLS) is 
therefore treated not as optional encryption, but as an architectural boundary condition. 
Identity is not an implementation detail; it is a structural prerequisite. 

2.3 Evidential Logging and Temporal Integrity 
Secure log management requires integrity, protection against tampering, and reliable 
timestamps (Kent & Souppaya, 2006). Without temporal coherence, forensic reconstruction 
and audit defensibility degrade. 
Time synchronization is therefore treated as a security control. 

2.4 ISA-95 and Structural Data Modeling 
ISA-95 defines hierarchical integration between enterprise and control systems (ISA, 2010). 
Implemented through a structured namespace, it reduces semantic entropy and clarifies 
data lineage. 
Structured telemetry becomes a prerequisite for reliable analytics. 

3. Architectural Design Principles 
From these foundations, five architectural principles were derived: 

1.​ Explicit Cryptographic Identity​
 All device communication is enforced through mTLS with X.509 certificates issued 
via a defined CA hierarchy.​
 

2.​ Segmentation of Responsibility Domains​
 Field, control, monitoring, and cloud domains are separated into distinct zones 
aligned with IEC 62443 logic.​
 

3.​ Isolation of Evidential Flow​
 Audit data is structurally decoupled from operational telemetry and stored in 
immutable cloud storage (S3 Object Lock).​
 

4.​ Temporal Integrity Enforcement​
 Time synchronization precedes secure communication to ensure certificate validity 
and forensic reliability.​
 

5.​ Structured Namespace for Analytical Readiness​
 MQTT topics follow an ISA-95-aligned hierarchy to ensure scalable lineage and 
traceability. 

 
These principles are instantiated in a working reference implementation. 
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4. Reference Implementation 
I designed and implemented this reference environment end-to-end to examine whether 
these architectural principles hold when exposed to operational constraints, configuration 
management realities, and simulated failure conditions. 
The environment consists of segmented edge nodes and embedded field devices. All 
services are containerized and deployed through declarative YAML configurations stored in 
Git. No mutable infrastructure elements are manually configured outside version control. 
Three structurally distinct data flows are implemented: 

4.1 Operational Telemetry Flow 
Field Device → MQTT Broker → SCADA → AWS IoT Core 
This flow supports operational visibility and business intelligence. 

4.2 Monitoring Flow 
Port-mirrored traffic → Suricata IDS 
Monitoring operates passively and independently from control logic, reducing functional 
coupling. 

4.3 Evidential Audit Flow 

IDS logs → Edge filtering → HTTPS/TLS → Immutable S3 (Object Lock enabled) 
Operational data supports performance; audit data supports accountability. Furthermore, the 
immutability and temporal integrity of the S3 Object Lock ensure that incident timelines can 
be reconstructed with forensic certainty.  
 
This specific capability is a prerequisite for meeting the strict 24-hour 'early warning' 
reporting windows mandated by NIS2 Article 23, transforming logging from a technical task 
into a compliance asset. 

4.4 Validation Results  

The simulated failure modes confirmed the efficacy of the architectural controls: 
●​ Boundary Enforcement: Revoking a sensor’s certificate at the CA level resulted in 

immediate termination of the MQTT connection by the broker (<100ms latency), 
validating the Zero Trust boundary. 

●​ Namespace Integrity: Attempts to publish to non-compliant topics were strictly 
rejected by the broker’s ACLs, preventing semantic pollution. 

●​ Monitoring Isolation: A saturated denial-of-service flood targeting the monitoring 
interface in Zone 3 resulted in zero packet loss or latency increase in the Zone 2 
control loop, confirming the physical decoupling of the sidecar pattern.​
 

These demonstrations intentionally simulate certificate misconfiguration, namespace 
violations, and monitoring isolation scenarios to test architectural assumptions under failure 
conditions. 
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5. Addressing the Legacy Gap: The Sidecar Pattern 
Brownfield environments often include legacy PLCs lacking native mTLS support. To 
preserve Zero Trust architecture without full hardware replacement, an Industrial Edge 
Gateway acts as a cryptographic sidecar. Secure mTLS connections terminate at the 
gateway, which proxies traffic over physically secured local links. 
This pattern preserves structural trust boundaries while accommodating legacy constraints. 

6. Deployment and Configuration Governance 
All nodes operate containerized workloads with version-pinned images. No floating “latest” 
tags are used. Configuration is declarative and stored in Git, ensuring traceability and 
reproducibility. 
Version pinning, container immutability, and Git-based configuration management mitigate 
drift and align with principles associated with ISO 27001 Annex A controls. 
Architecture is reinforced through disciplined deployment. 

7. Design constraints and Deliberate Simplifications 
The implementation uses Raspberry Pi hardware and WLAN connectivity rather than 
industrial PLCs and dedicated VLAN infrastructure. These simplifications are intentional. 
The objective is architectural validation rather than hardware replication. The structural logic 
remains invariant across hardware classes. 
 
The Raspberry Pi nodes function as abstracted Industrial Edge Nodes. The software stack 
(Docker, MQTT, Suricata, TLS enforcement) remains portable to industrial-grade gateways. 
However, while this reference implementation utilizes software-backed keys, a 
production-grade deployment mandates a Hardware Root of Trust (e.g., TPM 2.0 or Secure 
Element). In an operational industrial setting, private keys must be generated and stored 
within tamper-resistant hardware to prevent extraction. This ensures that a device's identity 
cannot be cloned even if the host operating system is compromised, a critical requirement 
for defensible architecture. 

8. Architecture Before Intelligence 
AI systems inherit the structural properties of their input environments. Without explicit 
identity, constrained trust boundaries, immutable logs, and temporal integrity, analytical 
output lacks defensibility.  
Trustworthy AI presupposes trustworthy architecture (European Commission, 2021). 
Transformation therefore proceeds in sequence: Structural clarity → Integrity enforcement → 
Observability → Intelligence. 
Reversing this order amplifies systemic uncertainty. 
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9. Empirical Validation: Demonstration Series 

The architectural claims are validated through a six‑part technical video demonstration 
series. These artifacts document the "Architecture-as-Built" and verify the efficacy of the 
controls under simulated failure modes. 

-​ Part 1: The Case for Structure: Threat Modeling & Design Rationale. 
-​ Part 2: Enforcing Zero Trust: mTLS & Certificate-Based Identity. 
-​ Part 3: Semantic Integrity: ISA-95 Namespaces & Time Synchronization. 
-​ Part 4: Defensive Segmentation: Passive Monitoring with Suricata IDS. 
-​ Part 5: Forensic Readiness: Immutable Logging & S3 Object Lock. 
-​ Part 6: Trustworthy Intelligence: From Secured Telemetry to Analytics. 

10. Conclusion 
Industrial transformation is often framed as digital acceleration. In practice, it is architectural 
clarification. 
This reference implementation reflects how I approach industrial architecture under 
conditions of regulatory accountability and technological acceleration. The objective is not 
technical sophistication for its own sake, but structural clarity. 
Under increasing systemic complexity, clarity becomes the decisive engineering discipline. 

⸻ 

Disclaimer & Limitation of Liability   

This document describes a reference implementation designed to validate architectural 
principles under controlled conditions. It is not intended as a turnkey production blueprint. 
While the design aligns with recognized standards and best practices, any real-world 
deployment requires contextual risk assessment, hardware validation, and compliance 
verification appropriate to the specific operational environment. The selected hardware and 
infrastructure components serve as architectural abstractions. The structural logic presented 
here remains transferable to industrial-grade platforms. 
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Appendix A — Zoned Data Flow Architecture 

A.1 Overview 

This appendix provides the detailed data‑flow specification corresponding to the four-zone 
defensible architecture described in Section 4.1. It formalizes the operational, monitoring, 
and evidential conduits and provides a traceable mapping between protocol, directionality, 
security control, and zone transitions. 

A.2 Data Flow Diagram (As‑Built) 
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​

Figure A.1 — Zoned Industrial Data‑Flow Architecture​
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The diagram illustrates the unidirectional and cryptographically constrained flows between: 

 
●​ Zone 1 — Field & Process​

ESP32‑S3 smart sensors publish mTLS‑protected MQTT telemetry. 
●​ Zone 2 — Control Network​

Raspberry Pi 1 (Mosquitto + NTP) acts as the trust‑terminating broker and time 
authority.​
Raspberry Pi 2 runs Ignition SCADA. 

●​ Zone 5  —  Management​
Raspberry Pi 3 hosts the OTA and CA-step server. 

●​ Zone 3 — Security Watchdog​
Raspberry Pi 4 runs Suricata IDS and a local evidential buffer. 

●​ Zone 4 — Enterprise Cloud​
AWS IoT Core ingests operational telemetry; AWS S3 Object Lock receives 
evidential logs. 

A.3 Flow Definitions 

Flow 1 — Operational Telemetry (Zone 1 → Zone 2 → Zone 4) 

Protocol: MQTT over mTLS (port 8883)​
Guarantees: 

●​ Identity: Device‑scoped X.509 client certificates 
●​ Confidentiality & integrity: TLS 1.2+ 
●​ Structure: ISA‑95 namespace enforcement​

Observability: 
●​ Port‑mirrored into Zone 3 
●​ Non‑authoritative cloud feed 

Flow 2 — Time Synchronization (Zone 2 → Zone 1/3) 

Protocol: NTP with authentication​
Guarantees: 

●​ Certificate validity 
●​ Log timestamp integrity 
●​ Replay prevention through synchronized epoch​

Role:​
Time is a security dependency, not an operational convenience. 
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Flow 3 — Management & OTA (Zone 2/3/5 → Zone 1) 

Protocol: HTTPS/TLS with MFA for privileged access​
Guarantees: 

●​ Strict separation from operational telemetry 
●​ Controlled access to firmware pipelines​

Note:​
Legacy devices receive secure updates through the Sidecar Gateway. 

Flow 4 — Security Monitoring (Zone 2 → Zone 3) 

Protocol: Port mirroring (read‑only)​
Guarantees: 

●​ No operational impact 
●​ Passive surveillance only​

Outcome:​
Suricata produces flow metadata, threat indicators, and event-level alerts. 

Flow 5 — Evidential Logging (Zone 3 → Zone 4) 

Protocol: HTTPS/TLS​
Guarantees: 

●​ Log signing and hashing on ingest 
●​ WORM semantics via AWS S3 Object Lock 
●​ Independent retention and immutability enforcement​

Purpose:​
Supports auditability, non‑repudiation, and forensic truth. 
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Appendix B — Hardware Reference Architecture 

This appendix documents the hardware mapping used in the reference implementation to 
support reproducibility and verifiability. 

B.1 Hardware Inventory 

Zone Device Role Key Functions 

Zone 1 ESP32‑S3 Smart 
Sensor 

Field Input Sensor → MQTT/mTLS client; local 
preprocessing; NTP client 

Zone 2 Raspberry Pi 1 Broker + NTP   Mosquitto broker; NTP authority 

Zone 2 Raspberry Pi 2 SCADA Node Ignition SCADA; Unified Namespace; OT 
data modeling 

Zone 5 Raspberry Pi 3 OTA Server + 
CA trust 

Firmware distribution; MFA‑protected 
management; CA trust anchor 

Zone 3 Raspberry Pi 4 IDS Node Suricata IDS; packet capture; evidential 
buffer 

Zone 4 AWS Cloud Analytics + 
WORM storage 

AWS IoT Core; AWS S3 Object Lock 
Vault 

B.2 Zone‑Level Roles 

Zone 1 – Field & Process 

●​ Minimal local attack surface 
●​ Cryptographic identity anchored in X.509 certificates 
●​ Delegates all trust boundaries to Zone 2 

Zone 2 – Control Network 

●​ Acts as trust consolidation layer 
●​ Hosting of namespace authority (Unified Namespace) 
●​ Separation of OT workloads: broker / SCADA / OTA 

Zone 3 – Security Watchdog 

●​ Physically/logically isolated 
●​ Passive, non‑intrusive inspection 
●​ Sole producer of evidential logs 
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Zone 4 – Enterprise Cloud 

●​ Non‑authoritative by design 
●​ Zero control path back into OT 
●​ Immutable evidence vault 
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Appendix C — Service & Container Topology 
C.1 Container Inventory 

This section lists the core microservices deployed across the reference architecture. 
 

Node Container Function Base Image Strategy 

Pi 1 mosquitto MQTT broker (TLS 1.2 
enforced) 

Alpine Linux (Hardened) 

Pi 1 chrony Stratum-2 NTP Time Authority Alpine Linux 

Pi 2 ignition SCADA / Unified Namespace Ubuntu (Vendor Supported) 

Pi 3 ota-server Secure Firmware Distribution Go Scratch Image 

Pi 4 suricata IDS / Traffic Inspection Debian Stable 

Pi 4 log-signer Batch Hashing & Signing Python 3.11-slim 

 

C.2 Security Constraints 

●​ No Cross-Container Trust: Identity is bound to the workload, not the host. 
●​ Mutual TLS (mTLS): Enforced for all inter-zone communication. 
●​ Ingress Locking: Containers expose no ports by default; strict allow-listing via Docker 

networking rules. 
●​ Rootless Execution: All containers run as unprivileged users (UID > 1000) to mitigate 

container breakout risks. 
 

C.3 Configuration Management & Versioning Strategy (The System Manifest) 

To maintain structural defensibility and meet supply chain transparency requirements (CRA), 
software versions are not tracked manually. Instead, the entire infrastructure state is 
enforced through a declarative System Manifest stored in Git. 
 
The "Lock File" Approach 

Each deployment zone is defined by a pinned docker-compose.yaml. Floating tags (e.g., 
:latest) are strictly prohibited in production. Instead, specific semantic version tags or 
SHA-256 digests are enforced to guarantee reproducibility. 
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Example: Zone 2 (Control) Manifest 

YAML 

​
services: 
  mqtt-broker: 
  ​ image: eclipse-mosquitto:2.0.18  # STRICTLY PINNED VERSION 
  ​ container_name: control_broker 
    ​ restart: always 
    volumes: 
     ​  - ./config/mosquitto.conf:/mosquitto/config/mosquitto.conf:ro 
  scada-core: 

image: inductiveautomation/ignition:8.1.35  # VENDOR SPECIFIC PIN 
    environment: 
  GATEWAY_ADMIN_PASSWORD_FILE=/run/secrets/gw_admin_password​
 

 
Audit Trail & Rollback 

Because the system configuration is code: 
1.​ Change Logging: Every version upgrade is a Git commit (e.g., "Bump Mosquitto 

2.0.17 to 2.0.18"). 
2.​ Attribution: The Git history records who made the change and when. 
3.​ Rollback: If a new version introduces instability, the system is reverted by checking 

out the previous Git commit, guaranteeing an exact return to the known-good state. 
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