
Designing Defensible Industrial Systems​
A Normatively Grounded Design Rationale and Reference Implementation (Feb. 2026)

Pieter Leek

Abstract
Industrial control systems increasingly operate under conditions of regulatory accountability,
cyber-physical convergence, and data-driven optimization. The European NIS2 Directive
formalizes cybersecurity as a governance responsibility at executive level (European Union,
2022). Simultaneously, industrial organizations pursue cloud integration and AI-enabled
analytics.
This paper translates established normative security frameworks into executable architecture
and validates them through implementation. Drawing upon IEC 62443 segmentation
principles (IEC, 2013), Zero Trust Architecture (Rose et al., 2020), NIST guidance on log
integrity (Kent & Souppaya, 2006), and ISA-95 structural modeling (ISA, 2010), it presents
both a design rationale and a working reference implementation.
The central thesis is that architectural clarity precedes analytical ambition.

1. Introduction: Structural Accountability in Industrial Systems
Industrial systems rarely collapse suddenly; they degrade structurally. Implicit trust
relationships accumulate, segmentation boundaries blur, namespaces drift, and logging
mechanisms lose evidential clarity. Operational continuity may persist while structural
integrity erodes.
Ashby’s (1956) Law of Requisite Variety suggests that systems must possess sufficient
internal structure to manage environmental complexity. As industrial environments integrate
cloud platforms, remote connectivity, and AI-driven analytics, systemic complexity increases.
Without proportional architectural discipline, fragility emerges.
The NIS2 Directive reframes cybersecurity as a management responsibility rather than a
purely technical safeguard (European Union, 2022). Architecture thus becomes an
instrument of governance, expressed through technical design decisions.
My professional experience across industrial and software domains has shown that
structural ambiguity is often a more persistent risk than technical malfunction. This work
addresses that risk at architectural level by translating normative principles into executable
structure.

2. Normative Foundations
The architectural rationale draws upon converging standards and theoretical principles.

2.1 IEC 62443 and Segmented Trust Domains
IEC 62443 introduces the zone and conduit model, requiring explicit separation of functional
domains and controlled communication paths (IEC, 2013). Trust must be structurally
bounded rather than implicitly assumed. Segmentation therefore serves as systemic risk
containment.

1 ​ ​ ​ ​ ​ ​ ​ ​ ​ Version 1.0 - February 2026

2.2 Zero Trust and Cryptographic Identity
Zero Trust Architecture rejects trust based on network location (Rose et al., 2020). Identity
must be cryptographically verifiable and continuously validated. Mutual TLS (mTLS) is
therefore treated not as optional encryption, but as an architectural boundary condition.
Identity is not an implementation detail; it is a structural prerequisite.

2.3 Evidential Logging and Temporal Integrity
Secure log management requires integrity, protection against tampering, and reliable
timestamps (Kent & Souppaya, 2006). Without temporal coherence, forensic reconstruction
and audit defensibility degrade.
Time synchronization is therefore treated as a security control.

2.4 ISA-95 and Structural Data Modeling
ISA-95 defines hierarchical integration between enterprise and control systems (ISA, 2010).
Implemented through a structured namespace, it reduces semantic entropy and clarifies
data lineage.
Structured telemetry becomes a prerequisite for reliable analytics.

3. Architectural Design Principles
From these foundations, five architectural principles were derived:

1.​ Explicit Cryptographic Identity​
 All device communication is enforced through mTLS with X.509 certificates issued
via a defined CA hierarchy.​

2.​ Segmentation of Responsibility Domains​
 Field, control, monitoring, and cloud domains are separated into distinct zones
aligned with IEC 62443 logic.​

3.​ Isolation of Evidential Flow​
 Audit data is structurally decoupled from operational telemetry and stored in
immutable cloud storage (S3 Object Lock).​

4.​ Temporal Integrity Enforcement​
 Time synchronization precedes secure communication to ensure certificate validity
and forensic reliability.​

5.​ Structured Namespace for Analytical Readiness​
 MQTT topics follow an ISA-95-aligned hierarchy to ensure scalable lineage and
traceability.

These principles are instantiated in a working reference implementation.

2 ​ ​ ​ ​ ​ ​ ​ ​ ​ Version 1.0 - February 2026

4. Reference Implementation
I designed and implemented this reference environment end-to-end to examine whether
these architectural principles hold when exposed to operational constraints, configuration
management realities, and simulated failure conditions.
The environment consists of segmented edge nodes and embedded field devices. All
services are containerized and deployed through declarative YAML configurations stored in
Git. No mutable infrastructure elements are manually configured outside version control.
Three structurally distinct data flows are implemented:

4.1 Operational Telemetry Flow
Field Device → MQTT Broker → SCADA → AWS IoT Core
This flow supports operational visibility and business intelligence.

4.2 Monitoring Flow
Port-mirrored traffic → Suricata IDS
Monitoring operates passively and independently from control logic, reducing functional
coupling.

4.3 Evidential Audit Flow

IDS logs → Edge filtering → HTTPS/TLS → Immutable S3 (Object Lock enabled)
Operational data supports performance; audit data supports accountability. Furthermore, the
immutability and temporal integrity of the S3 Object Lock ensure that incident timelines can
be reconstructed with forensic certainty.

This specific capability is a prerequisite for meeting the strict 24-hour 'early warning'
reporting windows mandated by NIS2 Article 23, transforming logging from a technical task
into a compliance asset.

4.4 Validation Results

The simulated failure modes confirmed the efficacy of the architectural controls:
●​ Boundary Enforcement: Revoking a sensor’s certificate at the CA level resulted in

immediate termination of the MQTT connection by the broker (<100ms latency),
validating the Zero Trust boundary.

●​ Namespace Integrity: Attempts to publish to non-compliant topics were strictly
rejected by the broker’s ACLs, preventing semantic pollution.

●​ Monitoring Isolation: A saturated denial-of-service flood targeting the monitoring
interface in Zone 3 resulted in zero packet loss or latency increase in the Zone 2
control loop, confirming the physical decoupling of the sidecar pattern.​

These demonstrations intentionally simulate certificate misconfiguration, namespace
violations, and monitoring isolation scenarios to test architectural assumptions under failure
conditions.

3 ​ ​ ​ ​ ​ ​ ​ ​ ​ Version 1.0 - February 2026

5. Addressing the Legacy Gap: The Sidecar Pattern
Brownfield environments often include legacy PLCs lacking native mTLS support. To
preserve Zero Trust architecture without full hardware replacement, an Industrial Edge
Gateway acts as a cryptographic sidecar. Secure mTLS connections terminate at the
gateway, which proxies traffic over physically secured local links.
This pattern preserves structural trust boundaries while accommodating legacy constraints.

6. Deployment and Configuration Governance
All nodes operate containerized workloads with version-pinned images. No floating “latest”
tags are used. Configuration is declarative and stored in Git, ensuring traceability and
reproducibility.
Version pinning, container immutability, and Git-based configuration management mitigate
drift and align with principles associated with ISO 27001 Annex A controls.
Architecture is reinforced through disciplined deployment.

7. Design constraints and Deliberate Simplifications
The implementation uses Raspberry Pi hardware and WLAN connectivity rather than
industrial PLCs and dedicated VLAN infrastructure. These simplifications are intentional.
The objective is architectural validation rather than hardware replication. The structural logic
remains invariant across hardware classes.

The Raspberry Pi nodes function as abstracted Industrial Edge Nodes. The software stack
(Docker, MQTT, Suricata, TLS enforcement) remains portable to industrial-grade gateways.
However, while this reference implementation utilizes software-backed keys, a
production-grade deployment mandates a Hardware Root of Trust (e.g., TPM 2.0 or Secure
Element). In an operational industrial setting, private keys must be generated and stored
within tamper-resistant hardware to prevent extraction. This ensures that a device's identity
cannot be cloned even if the host operating system is compromised, a critical requirement
for defensible architecture.

8. Architecture Before Intelligence
AI systems inherit the structural properties of their input environments. Without explicit
identity, constrained trust boundaries, immutable logs, and temporal integrity, analytical
output lacks defensibility.
Trustworthy AI presupposes trustworthy architecture (European Commission, 2021).
Transformation therefore proceeds in sequence: Structural clarity → Integrity enforcement →
Observability → Intelligence.
Reversing this order amplifies systemic uncertainty.

4 ​ ​ ​ ​ ​ ​ ​ ​ ​ Version 1.0 - February 2026

9. Empirical Validation: Demonstration Series

The architectural claims are validated through a six‑part technical video demonstration
series. These artifacts document the "Architecture-as-Built" and verify the efficacy of the
controls under simulated failure modes.

-​ Part 1: The Case for Structure: Threat Modeling & Design Rationale.
-​ Part 2: Enforcing Zero Trust: mTLS & Certificate-Based Identity.
-​ Part 3: Semantic Integrity: ISA-95 Namespaces & Time Synchronization.
-​ Part 4: Defensive Segmentation: Passive Monitoring with Suricata IDS.
-​ Part 5: Forensic Readiness: Immutable Logging & S3 Object Lock.
-​ Part 6: Trustworthy Intelligence: From Secured Telemetry to Analytics.

10. Conclusion
Industrial transformation is often framed as digital acceleration. In practice, it is architectural
clarification.
This reference implementation reflects how I approach industrial architecture under
conditions of regulatory accountability and technological acceleration. The objective is not
technical sophistication for its own sake, but structural clarity.
Under increasing systemic complexity, clarity becomes the decisive engineering discipline.

⸻

Disclaimer & Limitation of Liability

This document describes a reference implementation designed to validate architectural
principles under controlled conditions. It is not intended as a turnkey production blueprint.
While the design aligns with recognized standards and best practices, any real-world
deployment requires contextual risk assessment, hardware validation, and compliance
verification appropriate to the specific operational environment. The selected hardware and
infrastructure components serve as architectural abstractions. The structural logic presented
here remains transferable to industrial-grade platforms.

⸻

References
Ashby, W. R. (1956). An introduction to cybernetics. Chapman & Hall.​
European Commission. (2021). Ethics guidelines for trustworthy AI.​
European Union. (2022). Directive (EU) 2022/2555 (NIS2).​
IEC. (2013). IEC 62443-3-3: System security requirements and security levels.​
ISA. (2010). ANSI/ISA-95 Enterprise-Control System Integration.​
Kent, K., & Souppaya, M. (2006). Guide to computer security log management (NIST SP
800-92).​
Rose, S., Borchert, O., Mitchell, S., & Connelly, S. (2020). Zero trust architecture (NIST SP
800-207).

5 ​ ​ ​ ​ ​ ​ ​ ​ ​ Version 1.0 - February 2026

Appendix A — Zoned Data Flow Architecture

A.1 Overview

This appendix provides the detailed data‑flow specification corresponding to the four-zone
defensible architecture described in Section 4.1. It formalizes the operational, monitoring,
and evidential conduits and provides a traceable mapping between protocol, directionality,
security control, and zone transitions.

A.2 Data Flow Diagram (As‑Built)

6 ​ ​ ​ ​ ​ ​ ​ ​ ​ Version 1.0 - February 2026

​

Figure A.1 — Zoned Industrial Data‑Flow Architecture​

7 ​ ​ ​ ​ ​ ​ ​ ​ ​ Version 1.0 - February 2026

The diagram illustrates the unidirectional and cryptographically constrained flows between:

●​ Zone 1 — Field & Process​

ESP32‑S3 smart sensors publish mTLS‑protected MQTT telemetry.
●​ Zone 2 — Control Network​

Raspberry Pi 1 (Mosquitto + NTP) acts as the trust‑terminating broker and time
authority.​
Raspberry Pi 2 runs Ignition SCADA.

●​ Zone 5 — Management​
Raspberry Pi 3 hosts the OTA and CA-step server.

●​ Zone 3 — Security Watchdog​
Raspberry Pi 4 runs Suricata IDS and a local evidential buffer.

●​ Zone 4 — Enterprise Cloud​
AWS IoT Core ingests operational telemetry; AWS S3 Object Lock receives
evidential logs.

A.3 Flow Definitions

Flow 1 — Operational Telemetry (Zone 1 → Zone 2 → Zone 4)

Protocol: MQTT over mTLS (port 8883)​
Guarantees:

●​ Identity: Device‑scoped X.509 client certificates
●​ Confidentiality & integrity: TLS 1.2+
●​ Structure: ISA‑95 namespace enforcement​

Observability:
●​ Port‑mirrored into Zone 3
●​ Non‑authoritative cloud feed

Flow 2 — Time Synchronization (Zone 2 → Zone 1/3)

Protocol: NTP with authentication​
Guarantees:

●​ Certificate validity
●​ Log timestamp integrity
●​ Replay prevention through synchronized epoch​

Role:​
Time is a security dependency, not an operational convenience.

8 ​ ​ ​ ​ ​ ​ ​ ​ ​ Version 1.0 - February 2026

Flow 3 — Management & OTA (Zone 2/3/5 → Zone 1)

Protocol: HTTPS/TLS with MFA for privileged access​
Guarantees:

●​ Strict separation from operational telemetry
●​ Controlled access to firmware pipelines​

Note:​
Legacy devices receive secure updates through the Sidecar Gateway.

Flow 4 — Security Monitoring (Zone 2 → Zone 3)

Protocol: Port mirroring (read‑only)​
Guarantees:

●​ No operational impact
●​ Passive surveillance only​

Outcome:​
Suricata produces flow metadata, threat indicators, and event-level alerts.

Flow 5 — Evidential Logging (Zone 3 → Zone 4)

Protocol: HTTPS/TLS​
Guarantees:

●​ Log signing and hashing on ingest
●​ WORM semantics via AWS S3 Object Lock
●​ Independent retention and immutability enforcement​

Purpose:​
Supports auditability, non‑repudiation, and forensic truth.

9 ​ ​ ​ ​ ​ ​ ​ ​ ​ Version 1.0 - February 2026

Appendix B — Hardware Reference Architecture

This appendix documents the hardware mapping used in the reference implementation to
support reproducibility and verifiability.

B.1 Hardware Inventory

Zone Device Role Key Functions

Zone 1 ESP32‑S3 Smart
Sensor

Field Input Sensor → MQTT/mTLS client; local
preprocessing; NTP client

Zone 2 Raspberry Pi 1 Broker + NTP Mosquitto broker; NTP authority

Zone 2 Raspberry Pi 2 SCADA Node Ignition SCADA; Unified Namespace; OT
data modeling

Zone 5 Raspberry Pi 3 OTA Server +
CA trust

Firmware distribution; MFA‑protected
management; CA trust anchor

Zone 3 Raspberry Pi 4 IDS Node Suricata IDS; packet capture; evidential
buffer

Zone 4 AWS Cloud Analytics +
WORM storage

AWS IoT Core; AWS S3 Object Lock
Vault

B.2 Zone‑Level Roles

Zone 1 – Field & Process

●​ Minimal local attack surface
●​ Cryptographic identity anchored in X.509 certificates
●​ Delegates all trust boundaries to Zone 2

Zone 2 – Control Network

●​ Acts as trust consolidation layer
●​ Hosting of namespace authority (Unified Namespace)
●​ Separation of OT workloads: broker / SCADA / OTA

Zone 3 – Security Watchdog

●​ Physically/logically isolated
●​ Passive, non‑intrusive inspection
●​ Sole producer of evidential logs

10 ​ ​ ​ ​ ​ ​ ​ ​ ​ Version 1.0 - February 2026

Zone 4 – Enterprise Cloud

●​ Non‑authoritative by design
●​ Zero control path back into OT
●​ Immutable evidence vault

11 ​ ​ ​ ​ ​ ​ ​ ​ ​ Version 1.0 - February 2026

Appendix C — Service & Container Topology
C.1 Container Inventory

This section lists the core microservices deployed across the reference architecture.

Node Container Function Base Image Strategy

Pi 1 mosquitto MQTT broker (TLS 1.2
enforced)

Alpine Linux (Hardened)

Pi 1 chrony Stratum-2 NTP Time Authority Alpine Linux

Pi 2 ignition SCADA / Unified Namespace Ubuntu (Vendor Supported)

Pi 3 ota-server Secure Firmware Distribution Go Scratch Image

Pi 4 suricata IDS / Traffic Inspection Debian Stable

Pi 4 log-signer Batch Hashing & Signing Python 3.11-slim

C.2 Security Constraints

●​ No Cross-Container Trust: Identity is bound to the workload, not the host.
●​ Mutual TLS (mTLS): Enforced for all inter-zone communication.
●​ Ingress Locking: Containers expose no ports by default; strict allow-listing via Docker

networking rules.
●​ Rootless Execution: All containers run as unprivileged users (UID > 1000) to mitigate

container breakout risks.

C.3 Configuration Management & Versioning Strategy (The System Manifest)

To maintain structural defensibility and meet supply chain transparency requirements (CRA),
software versions are not tracked manually. Instead, the entire infrastructure state is
enforced through a declarative System Manifest stored in Git.

The "Lock File" Approach

Each deployment zone is defined by a pinned docker-compose.yaml. Floating tags (e.g.,
:latest) are strictly prohibited in production. Instead, specific semantic version tags or
SHA-256 digests are enforced to guarantee reproducibility.

12 ​ ​ ​ ​ ​ ​ ​ ​ ​ Version 1.0 - February 2026

Example: Zone 2 (Control) Manifest

YAML

​
services:
 mqtt-broker:
 ​ image: eclipse-mosquitto:2.0.18 # STRICTLY PINNED VERSION
 ​ container_name: control_broker
 ​ restart: always
 volumes:
 ​ - ./config/mosquitto.conf:/mosquitto/config/mosquitto.conf:ro
 scada-core:

image: inductiveautomation/ignition:8.1.35 # VENDOR SPECIFIC PIN
 environment:
 GATEWAY_ADMIN_PASSWORD_FILE=/run/secrets/gw_admin_password​

Audit Trail & Rollback

Because the system configuration is code:
1.​ Change Logging: Every version upgrade is a Git commit (e.g., "Bump Mosquitto

2.0.17 to 2.0.18").
2.​ Attribution: The Git history records who made the change and when.
3.​ Rollback: If a new version introduces instability, the system is reverted by checking

out the previous Git commit, guaranteeing an exact return to the known-good state.

13 ​ ​ ​ ​ ​ ​ ​ ​ ​ Version 1.0 - February 2026

	Abstract
	1. Introduction: Structural Accountability in Industrial Systems
	2. Normative Foundations
	2.1 IEC 62443 and Segmented Trust Domains
	2.2 Zero Trust and Cryptographic Identity
	2.3 Evidential Logging and Temporal Integrity
	2.4 ISA-95 and Structural Data Modeling

	3. Architectural Design Principles
	
	4. Reference Implementation
	4.1 Operational Telemetry Flow
	4.2 Monitoring Flow

	
	
	5. Addressing the Legacy Gap: The Sidecar Pattern
	6. Deployment and Configuration Governance
	7. Design constraints and Deliberate Simplifications
	8. Architecture Before Intelligence
	10. Conclusion
	Disclaimer & Limitation of Liability
	References
	Appendix A — Zoned Data Flow Architecture
	A.1 Overview
	A.2 Data Flow Diagram (As‑Built)
	A.3 Flow Definitions
	Flow 1 — Operational Telemetry (Zone 1 → Zone 2 → Zone 4)
	
	
	
	Flow 3 — Management & OTA (Zone 2/3/5 → Zone 1)
	Flow 4 — Security Monitoring (Zone 2 → Zone 3)

	Appendix B — Hardware Reference Architecture
	B.1 Hardware Inventory
	B.2 Zone‑Level Roles
	Zone 1 – Field & Process
	
	Appendix C — Service & Container Topology

